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Abstract 

We describe an open-source computational toolkit (AARON: An Automated Reaction 

Optimizer for New catalysts) that automates the quantum mechanical geometry 

optimization and characterization of the transition state and intermediate structures 

required to predict the activities and selectivities of asymmetric catalytic reactions. 

Modern computational quantum chemistry has emerged as a powerful tool for explaining 

the selectivity and activity of asymmetric catalysts.  However, reliably predicting the 

stereochemical outcome of realistic reactions often requires the geometry optimization of 

hundreds of transition state and intermediate structures, which is a tedious process.  

AARON automates these optimizations through an interface with a popular electronic 

structure package, accelerating quantum chemical workflows to enable the computational 

screening of potential catalysts.  AARON is built using a collection of object-oriented 

Perl modules (AaronTools) that provide functionality to build and modify molecular and 

supramolecular structures. The main functionalities of AaronTools are also available as 

stand-alone command-line scripts. The core features of AaronTools and AARON are 

explained and representative applications of AARON to both organocatalyzed and 

transition-metal catalyzed reactions are presented. 
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I. Background and Introduction 

Despite the widespread success of modern quantum chemistry in explaining the origin of 

activity and selectivity of homogeneous asymmetric catalytic reactions, the computational design 

of new catalysts is still far from routine.
1-12

  Instead, the vast majority of organic and 

organometallic catalysts are designed through experimental screening, with applications of 

quantum chemistry to such reactions done retrospectively. The lack of prospective applications 

of quantum chemistry to the catalyst design process stems in part from the considerable time and 

effort required to perform the hundreds of transition state (TS) optimizations required to 

accurately predict the stereochemical outcome of these reactions. 

The selectivity of an asymmetric reaction stems from the difference in relative rates of 

formation of stereoisomeric products.  In simple systems under Curtin-Hammett control,
13

 the 

difference in rates can be attributed to the difference in free energy between stereocontrolling 

transition states leading to the major and minor stereoisomeric products. However, in most 

realistic catalytic reactions, there is a breadth of possible mechanistic pathways for a given 

transformation. Combined with the large conformational space stemming from the flexibility of 

the substrates and catalyst, the number of accessible TS structures even for a single elementary 

step in a reaction is often large.
14-15

 For practical reasons, quantum mechanical predictions of 

stereoselectivities are often based on a single low-lying TS structure for the formation of each 

stereoisomer.  However, a growing number of studies on seemingly simple reactions have shown 

multiple conformations or configurations of a given TS structure, or even different elementary 

steps, have an impact on selectivity.
12,14

 Consequently, making reliable stereochemical 

predictions requires an exhaustive search for low-lying TS structures to identify all 

thermodynamically accessible pathways. Manually performing all of these geometry 

optimizations for different combinations of substrates and catalysts is tedious and time-

consuming. As a result, the experimental synthesis and testing of new asymmetric catalysts 

remains the preferred approach to their development. 

Many methods have been developed to automatically locate TS structures connecting two 

energy minima. Most of these approaches can be summarized as first generating an approximate 

TS structure, then optimizing this structure to a saddle point on the potential energy surface. 

From an initial TS structure, optimization algorithms such as the Berny algorithm
16-17

 and 

synchronous transit-guided quasi-Newton (STQN) methods
18

 can often locate the exact TS 

structure. However, the success of these methods depends on the quality of the initial TS 
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structure provided. Various approaches to generating approximate TS structures have been 

developed. Single-ended methods systematically adjust the structure starting from a single stable 

chemical structure, usually the reactant complex, until reaching the TS.
19-26

 Double-ended 

methods require structures of both reactant and product to construct a discretized reaction path 

along which TS guesses are generated.
27-31

 In terms of rapidly localizing many TS structures, a 

number of automated TS searching and reaction-path exploration approaches have been 

reported.
32-40

 For instance, Morokuma, et al.
32-36

 introduced the artificial force induced reaction 

(AFIR) method, which can automatically discover important reaction paths. West et al.
37-38

 

developed a high-throughput automated transition state searching method (AutoTST) for high-

throughput computational kinetics. Finally, Jacobsen et al.
39

 recently published details on the 

AutoTS code implemented in Jaguar,
41

 which generates TS guesses either from a linearly 

interpolated path connecting reactant and product or by using geometric information from a 

library of previously computed TS structures. 

Despite the power of these methods, the need to sample configurations and conformations, as 

encountered in asymmetric catalysis, remains an unmet need.  For example, in transition-metal 

catalyzed reactions, there are often multiple configurations of the ligands and substrates around 

the metal center that lead to thermodynamically accessible TS structures.  The multiplicity of 

relative substrate-catalyst orientations can be even more daunting in organocatalytic systems, 

particularly those involving ion-pairing.
8,42

 At the same time, for flexible substrates or catalysts 

(as well as those with rotatable substituents, i.e. OMe, i-Pr, etc.), there can be an enormous 

number of thermodynamically accessible conformations that can cause problems for many of the 

above-mentioned automated approaches. 

There have been many efforts to tackle the problem of molecular conformations, but few of 

these have focused on sampling transition state conformations. Even fewer are applicable to 

transition-metal catalyzed reactions. Moreover, many conformational searching approaches rely 

on classical molecular mechanics (MM) methods, which can be thwarted by the sometimes 

drastic differences between the QM and MM potential energy surfaces.  Consequently, searching 

for TS conformers is often performed by a filtration strategy, ascending a hierarchy of levels of 

theories.
8,11,43-45

 For example, DiRocco et al.
11

 developed a workflow that first samples 

conformations using MM methods, filters and clusters low-lying conformers, then optimizes 

these using DFT to get a final set of low-lying conformers. Seguin et al.
8
 employed a similar 

hierarchical approach combined with extensive manual searching of low-lying conformations. 
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Because of the absence of appropriate MM parameters for transition metals, semi-empirical 

methods are typically employed in such cases. For example, Paton et al.
44-45

 demonstrated the 

utility of sampling conformations using a Monte Carlo Multiple Minimum (MCMM) algorithm
46

 

using the semi-empirical method PM6-DH2 followed by DFT optimizations of low-energy 

conformers.  However, Minenkov, et al.
47

 recently benchmarked the PM6* and PM7 semi-

empirical methods for conformations of transition metal complexes, finding that these methods 

are likely insufficiently accurate to use for screening conformations of such systems. Finally, we 

note that with all of these approaches, one needs to be able to consistently optimize generated 

conformations to the nearest TS structure, which can pose technical challenges. 

Herein, we describe an open source computational toolkit (AARON: An Automated Reaction 

Optimizer for New catalysts)
48

 that automatically locates multiple conformations and 

configurations of TS structures for homogeneous catalytic reactions based on user-defined TS 

templates. AARON does not implement new electronic structure methods or geometry 

optimization approaches; instead, it automates quantum chemistry application workflows using 

existing electronic structure packages, thereby alleviating the need for users to construct input 

files, analyze output files, etc. for the hundreds of TS optimizations needed to reliably predict the 

stereochemical outcome of catalytic reactions. The result is accelerated QM-based predictions of 

selectivities.  AARON is written using a collection of object-oriented Perl modules called 

AaronTools,
49

 which provide functionality for building, manipulating, and comparing molecular 

structures, constructing input files, parsing output files, analyzing data, and submitting and 

monitoring jobs using queuing software commonly found on high-performance computer (HPC) 

clusters. Below, we first summarize the key features of AaronTools and AARON and then 

present representative applications of AARON to asymmetric transition-metal and 

organocatalyzed reactions. 

 

II. AaronTools  

AaronTools is an open-source collection of object-oriented Perl modules designed to facilitate 

the construction and analysis of complex molecular structures and the automation of quantum 

chemistry workflows, with a particular focus on small molecule (homogeneous) catalysts. 

Similar computational toolkits have been developed by several groups.
50-51,52

 For instance, Kulik 

and coworkers
51

 recently introduced  MolSimplify, which can rapidly generate reliable structures 

for transition metal complexes and compute first-principles-based properties.  
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Central to AaronTools is the Geometry class, which provides methods for probing and 

manipulating molecular structures (distances, dihedral angles, etc.) and also serves as a 

superclass to derive other powerful subclasses. Using the Geometry class along with these 

subclasses, users can create complex molecular and supramolecular structures and prepare input 

files for computational chemistry packages at various level of theory.
53

 Representative molecular 

structures created using these classes are depicted in Figure 1.  

 
Figure 1. a) Subclasses derived from the Geometry class; b) initial solid-state structure of columnar 

stacks of sumanenetrione;
54

 c) solid-state structure of aligned [8,8]-carbon nanotubes with included 

stacked benzenes; d) transition state structure for a Rh-catalyzed asymmetric hydrogenation reaction.
55 

 

We will focus on the Catalysis and Ligand classes below, providing a glimpse of how these 

tools can be used to construct and manipulate TS structures for asymmetric reactions. The 

Catalysis class contains attributes and methods for either transition state or intermediate 

structures in catalytic reactions. A Catalysis object can be initiated from a standard XYZ file or 

Gaussian log file.  For instance, 

$cata = new AaronTools::Catalysis( name => 'ts1' ); 

creates a catalysis object based on the geometry read from ts1.xyz, which is one of the TS 

structures reported by Wiest et al.
55

 for a Rh-catalyzed hydrogenation of enamides using the 

achiral ligand Z-dimethylphosphinoethane (ZDMP, see Figure 2a). Components of the catalysis 

system (substrates, ligand, and active center—the transition metal in this case) are automatically 

detected and stored as readily-accessible attributes of this catalysis object.  

One can similarly create new ligand objects using the Ligand class.  AaronTools includes an 

easily extensible library of common ligands
56

 or one can load custom ligands from a user-

supplied file. For example, 
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 $ligand = new AaronTools::Ligand(name => 'RR-Me-BPE') 

creates a ligand object containing the chiral ligand (R,R)-bis(dimethylphospholano)ethane 

[(R,R)-Me-BPE]. The backbone and substituents on the ligand are automatically detected and 

saved as attributes of the object, which facilitates further manipulation of the ligand. Having 

created this ligand object, one can use map_ligand to replace the existing ligand, ZDMP, in ts1 

with (R,R)-Me-BPE (see Figure 2b): 
 

$cata->map_ligand($ligand); 

The resulting structure can be further modified by replacing substituents on the ligand and 

substrate: 

 
$cata->substitute('ligand', 'Me'=>'Ph'); 

$cata->substitute('substrate', 5=>'COOCH3', 7=>'Me', 8=>'Me'); 

 

The first substitute call converts (R,R)-Me-BPE into (R,R)-Ph-BPE by replacing all four 

methyl groups with phenyl rings, automatically rotating the added substituents to minimize the 

Lennard-Jones (LJ) energy and then removing any remaining steric clashes by bending and 

rotating the substituents. The second call of substitute modifies the substrate, replacing 

hydrogens 7 and 8 with methyl groups and the CN group (which starts with atom 5) with 

COOCH3.  These processes are depicted in Figure 2b, and yield a good guess for the 

corresponding transition state. 

Using these and related tools, one can build initial TS structures for virtual libraries of 

potential catalysts and substrates. For example, initial TS structures for this same Rh-catalyzed 

hydrogenation reaction can be constructed with the following four lines of Perl for the virtual 

library of 441 combinations of ligands and substrates depicted in Figure 2c: 

 
$lig_subs = [qw(Me Ph tBu iPr CF3 F)]; 

$sub_subs = [qw(Me Et Ph)]; 

@cata = $cata->screen_subs('ligand', '24,27'=>$lig_subs, '25,26'=>$lig_subs);   

@cata = map {$_->screen_subs('substrate', 7=>$sub_subs, 8=>$sub_subs)} @cata; 

 

In particular, atoms (24, 27) and (25, 26) of the (R,R)-Me-BPE ligand are systematically replaced 

with all combinations of (H, Me, Ph, t-Bu, i-Pr, CF3, and F), while R1 and R2 of the substrate are 

replaced with (Me, Et, and Ph).  Similar substitutions can be applied to any molecular structure, 

rapidly generating diverse libraries of molecular geometries.  For instance, in addition to 
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building libraries of TS structures, these tools can be used to generate structures for the 

computation of QM-derived molecular descriptors for use in informatics-driven applications. 

 

 
Figure 2. . Construction of initial TS structures for the Rh-catalyzed hydrogenation of enamides using C2-

symmetric phosphoric ligands, starting from a reported TS structure from Wiest et al.
55

  a) Overall 

reaction and key ligands; b) replacement of ZDMP with (R,R)-Me-BPE via map_ligand and addition of 

substituents on both the ligand and substrate via substitute. c) Generation of a library of 441 initial TS 

structures for combinations of 49 ligands and nine substrates. 

 

Finally, we note that these and many of the other components of AaronTools are available as 

stand-alone command-line scripts. This allows users with no knowledge of Perl to utilize these 

tools and to incorporate AaronTools functionality into other workflows.  For instance, the 

following system call will replace the ZDMP ligand in ts1.xyz with (R,R)-Me-BPE and write 

the resulting coordinates to the file ts2.xyz: 

 
map_ligand ts1.xyz –l RR-Me-BPE –o ts2.xyz 
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III. AARON  

Using AaronTools, we have developed a computational toolkit (AARON) capable of 

automatically and simultaneously screening potential catalysts and substrates for both 

organocatalytic and transition metal catalyzed reactions based on a user-supplied library of TS 

and intermediate structures. AARON can rapidly compute the hundreds of TS and intermediate 

structures required to reliably predict the stereochemical outcome of complex asymmetric 

catalytic reactions with minimal human intervention, opening the door for the computational 

screening of potential new catalysts. Briefly, given a previously computed set of TS and 

intermediate structures for a given reaction, AARON computes analogous structures for related 

catalysts and substrates while also systematically searching for conformations of rotatable 

substituents. 

 

A. Overall Program Flow 

The overall organization of AARON is shown in Figure 3. It starts by gathering information 

from a simple and flexible text-based input file. This input includes information about the 

location of the TS template library and reaction conditions (temperature, solvent, etc.) as well as 

keywords specifying the level of theory (including effective core potentials, custom basis sets, 

solvent model, DFT integration grid,
57

 etc.). Preset levels of theory can be defined either system-

wide or by each user, allowing for very simple AARON input files for routinely-used levels of 

theory. In the input file, users also specify catalysts/ligands and substrates to be screened. 

AARON constructs each possible catalyst/substrate combination and locates all TS structures 

for these combinations, following the same workflow for each combination. Briefly, the 

procedure consists of: 

1) building initial TS structures for new ligands and substrates based on the structures in the 

template library;
58

  

2) performing a series of constrained and unconstrained geometry optimizations (Steps 1-3), 

followed by harmonic vibrational frequencies (Step 4) and potential higher-level single 

point energies (Step 5); and  

3) analyzing the resulting structures.  

There are typically many TS structures for each substrate/catalyst combination, and Steps 1-5 for 

each catalyst/substrate combination are run as separate jobs in a typical HPC environment. This 
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results in high throughput, particularly for HPC resources with a large number of individual 

nodes.  

 
Figure 3. Overall workflow of AARON. 

 

To maximize efficiency when varying both catalyst and substrates, AARON performs a 

hierarchical search in which TS structures are first located for any new ligands acting on the 

original substrates found in the template library (the left part in Figure3). Once these TS 

structures have been located and vetted, they are used as templates for any new substrates (the 

right part in Figure 3).  If neither new ligands nor substrates are requested, AARON performs a 

conformational search of rotatable substituents based on the structures in the TS template library.  

After AARON builds initial TS structures, it performs a series of constrained and 

unconstrained optimizations (Steps 1-3) starting from the initial structure built by AaronTools. In 
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Step 1, any new component of the structure (e.g. a new ligand or substituent) is optimized at a 

low level of theory (the default is PM6). This refines the initial TS structure and removes steric 

clashes, reducing the number of steps in downstream optimizations at higher levels of theory. In 

Step 2, an energy minimization is performed at a user-defined level of theory with constraints 

added to all forming/breaking bonds to yield a structure that should closely resemble the 

transition state. In Step 3, AARON performs a full TS optimization using the Berny algorithm 

built into Gaussian.
16-17

 At each point in this process there are many possible issues that can 

arise; these are caught by the TS vetting process (see Section F below).  After a possible TS 

structure has been located, harmonic vibrational frequencies are computed to confirm the nature 

of the stationary point and to obtain thermochemical data. If requested, single point energies are 

also computed at a higher level of theory.   

AARON employs a flexible and modular workflow that can be readily deployed on HPC 

clusters with popular queueing systems and can be stopped and restarted at any point. Input and 

output files for the electronic structure computations are stored and organized under an easily-

navigated directory tree that allows users to monitor the workflow and fix any problematic 

structures encountered.  A utility is included that automatically constructs tables of absolute 

energies, enthalpies, and free energies as well as all unique optimized structures for inclusion in 

Supporting Information. Capabilities are currently in development that will populate databases 

with computed TS properties for informatics applications. 

 

B. Construction of Initial Transition State Structures 

Central to locating TS structures is the generation of an initial TS guess for a given catalyst 

and substrate. AARON uses geometries from previously located TS structures (the TS template 

library) as templates for the new catalysts and substrates. This approach is also one of the core 

strategies used to generate initial TS structures in AutoTS.
39

 In contrast to AutoTS, however, 

which automatically detects the templating TS using SMILES strings, AARON requires the user 

to specify the reaction template. While less general, such an approach allows AARON to handle 

complex catalytic reactions that are still out of reach of more fully automated approaches. The 

TS template library is stored as standard XYZ files in a plain-file database. In addition to a 

system-wide TS template library, users can construct their own libraries.  

AARON will compute analogous structures for new catalysts/substrates for all structures 

found in the specified library, automatically searching over conformations of rotatable 
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substituents.  Thus, AARON partially addresses the configuration problem by having the user 

enumerate the TS configurational space for a simplified ligand/substrate manually by including 

these configurations in the TS template library. Consequently, the library should contain all 

reasonable configurations and relative substrate-catalyst orientations that can lead to 

thermodynamically accessible TS structures for any of the catalysts and substrates to be 

screened.  This can consist of TS structures for multiple elementary steps as well as the 

corresponding intermediates—whatever is needed to predict the desired selectivity (although the 

focus here is on stereoselectivities, AARON is also suitable for predicting regioselectivites, etc.).  

An example of a TS template library can be taken from work from Liu et al.,
59

 who conducted 

a thorough study of the regio- and stereoselectivity of Rh-catalyzed carboacylations of 

benzocyclobuteneones.  Liu et al.
59

 considered six configurations of the stereocontrolling olefin 

migratory insertion step for this reaction (TS1-6 in Scheme 1), optimizing these structures for the 

achiral ligand dppb to identify the most favorable configuration (TS1). Then, the diastereomeric 

forms of TS1 leading to the two possible stereoisomeric products were computed to understand 

the stereoselectivity of the chiral ligand SEGPHOS.  However, there is the possibility that some 

of the other TS structures in Scheme 1 could impact the selectivity for the SEGPHOS-catalyzed 

process even though they are relatively high-lying for dppb.  Using the dppb-based structures 

already computed by Liu et al.
59

 as a TS template library, AARON could readily compute all 

structures leading to both the major and minor stereoisomer for the chiral ligand SEGPHOS.  

 
Scheme 1. Example of the multiple configurations and substrate-catalyst orientations that must be 

included in a TS template library for a Rh-catalyzed carboacylation reaction studied by Liu et al.
59

 

 

Once the TS template library has been constructed, AARON can be used to make predictions 

for different ligands or catalysts (for simplicity, we will primarily refer to ligands below). 

AARON maps the donor atoms of any new ligand to the corresponding atoms of the ligand 
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found in the TS template library (for transition-metal based catalysts, ligand atoms bound to the 

metal are automatically detected as donor atoms; for organocatalysts, the donor atoms must be 

identified when constructing the TS library). The only information required are the identities of 

the donor atoms for the new ligand (i.e. those that either bind the transition metal or, for 

organocatalysts, engage directly with the substrates). These donor atoms are mapped onto the 

analogous atoms in the templating TS to mimic the template structure as closely as possible.  The 

precise mapping strategy depends on the nature of the ligand/catalyst, which is detected 

automatically.  AARON can map a broad range of ligands/catalysts for both organocatalyzed 

reactions and transition metal catalysts, including multidentate, bidentate, and monodentate 

ligands (see Figure 4) as well as ‘multi-block’ systems with donor atoms located on different 

catalyst components connected via flexible covalent linkers (see Figure 5). 

 

 
Figure 4. Examples of replacing bidendate and monodentate ligands.  Donor atoms are highlighted in 

green. 
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For multidentate ligands, AARON maps new ligands by minimizing the root mean-squared 

deviation (RMSD, determined using the quaternion-based algorithm of Kearsley
60

) between all 

donor atoms of the new and old ligands. For bidentate ligands, the two donor atoms alone do not 

uniquely determine the ligand position. Therefore, after positioning the ligand to minimize the 

RMSD for the two donor atoms, the ligand is rotated around the axis defined by these donor 

atoms to minimize the LJ energy of the system. For example, Figure 4 shows the replacement of 

the bidentate ligand dppb with SEGPHOS in TS1 from Scheme 1.
59

 For monodentate ligands, the 

ligand can fall into several classes depending on the presence of cyclic substructures and 

AARON can automatically map among these different classes. For example, Figure 4 shows the 

replacement of the BINOL-based phosphoramidite ligand A in a TS structure for a Cu-catalyzed 

conjugate addition computed by Paton, et al.
44

 with both a SPINOL-based analog (B) and an 

NHC (C). 

 
Figure 5. Example of replacing a ‘multi-block’ catalyst in which multiple atoms of the catalyst connected 

by flexible linkers bind the substrate. a) thiourea-catalyzed addition of nitroethene to a β-napthol reaction 

and the key TS. b) Mapping of a squaramide-based catalyst onto the TS structure for a thiourea-based 

catalyst. 

 

More general binding motifs (‘multi-block’ binding) occur for many organocatalyzed 

reactions, in which internal torsions can change the relative position of catalyst atoms that bind 

the substrate (still called ‘donor atoms’ here for simplicity). AARON first maps donor atoms 

connected to the core of the catalyst (‘central donors’) and then those connected to peripheral 

groups (‘remote donors’). The central donors are mapped using the above strategy for 
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monodentate, bidentate, etc. ligands depending on the number of donor atoms. Rotatable bonds 

connecting the central donors and remote donors are detected automatically and the dihedral 

angles around these bonds sampled to best overlap the donor vector between remote donors of 

new catalyst and those found in the TS template library while also adjusting the position of the 

central component (if applicable) of the catalyst to minimize steric crowding. Substituent 

orientations and angles are then altered to remove remaining steric clashes to generate a reliable 

initial TS structure. For example, for the asymmetric dearomatization reaction catalyzed by a 

bifunctional hydrogen bonding catalyst presented in Figure 5a,
61

 a thiourea-based organocatalyst 

is replaced by a squaramide-derived catalyst with a different backbone and sterically-congested 

tertiary amine (Figure 5b). 

 

D. Conformational Searches 

While the configurational space must be manually enumerated in the construction of the TS 

template library, AARON can automatically search portions of the conformational space spanned 

by rotatable substituents.
62

 This represents a considerable time-savings for the user, as 

exhaustively searching these conformations manually is tedious. AARON utilizes a rule-based 

hierarchical search strategy based on knowledge of preferred torsional angles for each substituent 

type to prevent the combinatorial explosion of the conformational space that would result from a 

more brute force approach.
63

 The rules are: 1) conformers are sampled only for substituents 

detected by AARON or specified by the user as new substituents; 2) torsional angles sampled for 

each substituent are determined based on its symmetry; 3) conformations are searched 

hierarchically such that conformational searching for later substituents begins only after 

completion of the conformer search for earlier substituents. In contrast to many of the tiered 

conformational search algorithms
8,11,43-44

 that rely on initial sampling with MM-potentials or 

semi-empirical methods, AARON searches conformations directly at the chosen DFT level. This 

circumvents issues arising from differences between MM or semi-empirical and DFT potential 

energy surfaces.  

The first rule accounts for the fact that many conformational changes are inconsistent with a 

given TS structure. For instance, potentially flexible linkers connecting donor atoms are 

recognized as the backbone of the ligand and are automatically rotated to position the donor 

atoms to best bind the metal center (in transition-metal catalysis) or substrates (in 

organocatalysis). The second rule relies on the fact that generated conformers provide initial TS 
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structures that will then be optimized. As such, there is little need for dense conformational 

sampling since most of these TS guesses will converge to identical structures. The 

conformational space to be explored is reduced by sampling conformations according to the 

symmetry of substituents. Despite this, for catalysts or substrates with even a modest number of 

rotatable groups (> 5) there can be an enormous number of combinations of conformers to be 

sampled. This necessitates the hierarchical searching method, as per rule 3. In this hierarchical 

searching method (see Figure 6), AARON first searches conformers for one substituent. Starting 

from all unique conformers identified by rotating this substituent, AARON generates a new 

generation of conformers by rotating the next substituent, and so on. The result is the hierarchy 

of conformers depicted in Figure 6.        

Even though these rules lead to sampled structures that are sparsely distributed in the 

conformational space, many initial TS structures converge to the same conformers. To account 

for this, AARON monitors all conformers during the geometry optimizations.  If a duplicate 

conformation is identified (based on an RMSD cutoff of 0.15 Å), the corresponding job is killed 

and the repeated conformer removed. As a result, children conformers of the repeated conformer 

are never sampled. While this hierarchical check-and-remove mechanism is intended to 

accelerate the conformational search, it may miss key conformations, especially in cases in 

which substituents engage in any sort of ‘geared’ conformational change (e.g. multiple t-Bu 

groups on nearby carbons). For these cases, a full, brute-force conformer search can be 

performed.     

 
 Figure 6. Example of the hierarchical searching of a fictitious system with three substituents (Et, Ph, and 
i
Pr). 

 

E. Thermochemistry  

AARON provides predicted selectivities based on computed energies, enthalpies, and free 

energies. The latter are computed using both the standard rigid-rotor/harmonic-oscillator 
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approximation (RRHO) and the quasi-RRHO approximation of Grimme.
64

 These values can be 

computed based on the level of theory used for the geometry optimizations and vibrational 

frequencies or using higher-level single point energies.  In the latter case, the entropic 

contributions are computed using the vibrational frequencies from the lower level of theory.  

After the conformational search, there are typically many unique conformers corresponding to 

each TS structure from the TS template library. For each thermodynamic quantity (energy, 

enthalpy, free energy), AARON performs a Boltzmann weighting over all unique conformers to 

compute the effective energy for each TS.  For instance, 

𝐺𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = −𝑅𝑇𝑙𝑛( ∑ 𝑒−
𝐺𝑖
𝑅𝑇

𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑒𝑟𝑠

𝑖

) 

Final predicted stereoselectivities are based on a Boltzmann-weighted sum over the effective 

energies, enthalpies, and free energies for all TS structures leading to formation of different 

stereoisomers. For example, for an enantioselective reaction the ee is computed in terms of 

effective free energies as  

𝑒𝑒(%) =
∑ 𝑒

−𝛥𝐺𝑒𝑓𝑓(𝑅𝑖)

𝑅𝑇𝑇𝑆
𝑖 − ∑ 𝑒

−𝛥𝐺𝑒𝑓𝑓(𝑆𝑖)

𝑅𝑇𝑇𝑆
𝑖

∑ 𝑒
−𝛥𝐺𝑒𝑓𝑓(𝑅𝑖)

𝑅𝑇𝑇𝑆
𝑖 + ∑ 𝑒

−𝛥𝐺𝑒𝑓𝑓(𝑆𝑖)

𝑅𝑇𝑇𝑆
𝑖

 

F. Step Vetting and Error Checking 

 Since transition state optimizations are prone to failure, AARON checks all running jobs 

periodically to ensure that they are converging to the correct TS structure (“Step vetting" in 

Figure 3). If a job aborts for any reason or takes an incorrect geometry optimization step (e.g. 

breaks or forms a bond not involved in the targeted elementary step), AARON will attempt to 

either fix the structure or add additional keywords to the input file to address the problem (Figure 

7). AARON compares the distances for any forming/breaking bonds in the transition state 

structure with those of the templating TS. If the distance between reacting atoms is too large, 

AARON will shorten this coordinate and restart from Step 2, and vice versa. AARON also 

monitors the connectivity of the system during all optimizations. If any unexpected bond 

breaking or forming is identified, AARON stops the current optimization, fixes the geometry, 

and restarts from Step 2 with additional constraints added for this problematic bond coordinate.  

Upon passing TS vetting, AARON checks the output file for any errors and responds accordingly 

based on a set of rules derived from our experience locating TS structures. This includes errors 



 17 

arising from SCF convergence failure, etc. AARON tracks the number of attempts for each step, 

and adds additional keywords (for example, to shorten the maximum step size or compute force 

constants more frequently) to try to deal with particularly problematic optimizations.   The net 

result is a robust protocol to consistently locate TS structures with precise error control and 

geometry vetting. 

 

Figure 7. Procedure for ‘Step Vetting’, in which AARON constantly monitors all jobs to ensure that 

correct TS structures are located.  For jobs that die with no recognizable error, the last geometry is used 

and the job restarted. 

 

IV. Representative Applications 

Below, we demonstrate the power of AARON through applications to various reaction types. 

We strove to design AARON to be as flexible and general as possible, and the following 

examples show that AARON can be applied broadly. 

 

A. Pd-Catalyzed Heck Allenylation 

 Sigman and co-workers
65-68

 have developed a series of Pd-catalyzed redox-relay Heck 

reactions and Wiest, Sigman, and co-workers
69

 have shown computationally that the migratory 

insertion step in these reactions is stereocontrolling. Most recently, Sigman et al.
70

 studied the 

Heck relay reactions of substrates 2a and 2aa using the chiral ligand 2-t-Bu-PyrOx (L1 in Figure 
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8a) at the M06/6-31+G(d)/LANDL2DZ level of theory.  They performed a systematic search of 

the four possible orientations of the substrates relative to the catalyst (TS1 – TS4 in Figure 8b) 

for formation of the two enantiomers of the product. For some of these, they also considered 

multiple conformations of the hydroxymethyl group. In total, thirteen low-lying TS structures 

were reported for the reaction of 2a and nine for 2aa.  The experimental selectivity, which is 

significantly greater for substrate 2a than for 2aa, was explained in terms of the difference in 

free energy between the lowest-lying TS structures leading to the two different enantiomeric 

products.  

This reaction provides an ideal system to demonstrate the ability of AARON to locate TS 

structures covering the full conformational space of the catalyst and substrates.  We constructed 

a TS template library using the eight unique TS structures (ignoring the conformations of the 

CH2OH group) reported by Sigman et al.
70

  The cyclohexenone of substrate 1 can potentially 

have two ring-puckered conformations, which doubles the number of structures that must be 

included in the TS template library to 16.  We used AARON at the same level of theory 

employed by Sigman et al.
70

 to locate all low-lying TS structures for substrates 2a and 2aa using 

this TS template library and systematically searching for conformations of the substituents CF3, 

t-Bu, and CH2OH.  Systematically considering all orientations of the substituents combined with 

the two conformations of the cyclohexenone leads to 192 possible TS structures for each 

substrate (2a and 2aa). Without any user intervention, AARON located 90 unique TS structures 

for 2a and 94 for 2aa. The ‘missing’ TS structures are primarily due to conformations that 

converged to identical structures during the optimizations.  

Relative free energies for the computed TS structures for substrates 2a and 2aa are plotted in 

Figure 8c. Overall, we find that there is a dense manifold of thermodynamically accessible TS 

structures lying within 2.6 kcal/mol of the global minimum energy TS structure (white and light-

gray shaded regions in Figure 8c). For example, for substrate 2a, 21 of the 90 computed TS 

structures are in this range, while for 2aa this number increases to 49 of 94. In addition to 

showcasing the ubiquity of low-lying TS structures for this seemingly simple transformation, the 

data in Figure 8c indicates that there is not a single key low-lying (R) and (S) transition state 

structure for either substrate.  Instead, multiple TS structures arising from different TS 

configurations impact the stereoselectivity. Moreover, the configuration giving rise to the lowest-

lying TS structure for each stereoisomer differs for the two substrates.  These data highlight the 
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challenges of improving the selectivity of a given catalyst—it is often not sufficient to simply 

increase the free energy difference between a single pair of TS structures leading to different 

stereoisomers; instead, one must devise a catalyst that differentiates between two disparate 

families of TS structures. These results also highlight the dangers of manually searching for 

stereodetermining transition states using conventional tools, since one can easily miss key low-

lying structures.  The lowest-lying TS for the formation of each stereoisomer can arise from 

qualitatively different configurations for different substrates, and assumptions regarding the 

‘preferred’ configuration based on results for one substrate are often not transferrable to other, 

seemingly similar substrates.  

 

 

Figure 8. a) Pd-catalyzed redox-relay Heck reaction from Sigman and co-workers
70

 using the chiral 

ligand 2-t-BuPyrOx. b) Eight TS structure comprising the TS template library for the application of 

AARON to this reaction. c) Relative free energies for TS structures located by AARON for substrates 2a 

and 2aa.  The gray shaded regions denote energy ranges of TS structures expected to have Boltzmann 

populations of <1% (dark gray) and <10% (light gray) relative to the lowest-lying TS structures.  
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A key benefit provided by AARON is that studying two substrates requires no more user 

effort than studying one, in contrast to the manual application of conventional computational 

tools. Indeed, one can screen a given catalyst across dozens of substrates by simply specifying 

the substitutions that must be performed to construct this substrate library. In the following 

examples, we will discuss the use of AARON to screen multiple catalysts for a given reaction. 

 

B. Rh-Catalyzed Hydrogenation of Enamides 

Transition-metal-catalyzed asymmetric hydrogenations represent a cornerstone of synthetic 

routes to a wide range of optically active compounds,
71

 and chiral phosphorus ligands have 

proved highly effective in catalyzing this class of reactions. However, some mechanistic details 

of Rh-catalyzed hydrogenations of enamides are still unsettled.  AARON was previously used to 

probe the mechanism and to explain the stereoselectivities of the Rh-catalyzed asymmetric 

hydrogenation of enamides shown in Figure 9.
12

  Previous computational studies
72-75

 and our 

preliminary transition state searches revealed two key steps for this reaction in which H is 

transfered from the Rh to the alkene group of the substrate (Steps 1 and 2). Two distinct 

mechanisms are possible for this reaction depending on whether the α- or β- carbon is 

hydrogenated first. In each step for each mechanism, the substrate can adopt different 

configurations with respect to the Rh atom, giving rise to at least eight potential TS structures 

leading to each of two enantiomeric products. This, combined with the existence of rotatable 

OMe groups on both the substrate and some of the ligands, leads to hundreds of possible TS 

structures for each ligand.  

Using AARON, we screened six ligands and located a total of ~250 TS structures spanning 

the configurational and conformational spaces. Unlike the previous example discussed, in which 

there was a single stereodetermining step but multiple configurations and conformations, this 

reaction is more complex in that there are multiple mechanisms and stereodetermining steps 

combined with different configurations and conformations. This leads to numerous reaction 

paths. Figure 9 shows the relative free energies of TS structures for L2, for which the predicted 

stereoselectivity is in exact agreement with experiment.
76

 There are paths connecting many of 

these TS structures for the two hydrogenation steps and the two possible mechanisms, leading to 

a complex web of possible reaction paths. For each reaction path, the step with higher free 

energy is rate-limiting. As seen in Figure 9, for some pathways the first H-transfer is rate-

limiting whereas the second step is rate-limiting for others. Furthermore, there are a large 
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number of thermodynamically accessible pathways and both stereoisomers can form via multiple 

mechanisms. Indeed, the lowest-lying pathway to (S) is predicted to lie below the lowest-lying 

pathway leading to (R); predictions of the stereoselectivity based solely on these two low-lying 

TS structures would incorrectly predict the overall sense of stereoinduction.  However, a 

Boltzmann weighting over all low-lying pathways correctly predicts the excess formation of the 

(R) product due to the existence of several relatively low-lying pathways leading to this 

stereoisomer. Thus, there is not a single step or even mechanism that completely characterizes 

this reaction, and reliable predictions of stereoselectivity require a Boltzmann weighting over all 

accessible pathways.  AARON performs this weighting automatically. Moreover, the data 

provided by AARON showed that the mechanism corresponding to the lowest-energy path for 

this reaction varies with the structure of the ligand, highlighting the importance of considering all 

viable reaction paths for each ligand screened. 

 

Figure 9. Relative free energies for TS structures for the asymmetric hydrogenation of enamides for the 

first and second hydride transfer steps (Steps 1 and 2) following two possible mechanisms (hydride 

transfer to Cα first or Cβ first) for formation of the major (R, left) and minor (S, right) stereoisomeric 

products. Colored lines indicate pathways between the TS structures for two steps.  For formation of each 

stereoisomer, the lowest-lying rate-limiting TS structure is outlined in black.  Data from Ref. 
12

. 
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C. Lewis-Base Promoted Propargylation of Aromatic Aldehydes 

Finally, we note that AARON has been successfully applied to organocatalyzed reactions, 

more specifically bidentate Lewis-base catalyzed allylations and propargylations of aromatic 

aldehydes.
77-78

 The stereocontrolling step in these reactions involves a hexacoordinate silicon, 

and previous computational studies established that there are five distinct ways to arrange the six 

groups surrounding the Si.
79

 Each of these five configurations results in a pair of TS structures 

leading to each of the possible enantiomeric alcohols, leading to ten potential TS structures for 

C2 symmetric catalysts and 20 for non-C2-symmetric ones.
14

 Lu and co-workers
14,80

 showed that 

accurate stereochemical predictions for these reactions require the computation of all ten or 20 

possible structures.  

Starting from a TS template library constructed from the TS structures of Lu et al.,
80

 Rooks et 

al.
77

 used AARON to screen a set of 18 bipyridine N,N′-dioxide derived catalysts for the 

allylation of benzaldehyde for which experimental stereoselectivities were available. The 

computed stereoselectivities were in good agreement with experiment, with predictions for 16 

out of 18 catalysts within 20% of the experimental data.  AARON was also used to screen these 

same catalysts for the asymmetric propargylation of benzaldehyde, revealing several catalysts 

predicted to be moderately stereoselective.  More recently, Doney et al.
78

 used AARON to 

screen a library of 60 potential catalysts built on six bipyridine N,N′-dioxide-derived scaffolds 

for this same propargylation reaction. Predicted ee’s ranged from 45% (S) to 99% (R), with 12 

catalysts predicted to exhibit stereoselectivities exceeding 95%. The analysis of a large number 

of catalysts also revealed broad trends in the origin of stereoselectivity in this reaction that would 

have been difficult to unravel by studying a more limited number of instances. Finally, based on 

these data, Doney et al.
78

 proposed a novel catalyst predicted by AARON to provide very high 

stereoselectivities by preferentially stabilizing a particular TS structure.  

 

V. Summary and Concluding Remarks 

The ability to reliably and rapidly predict the stereoselectivities of asymmetric catalytic 

reactions across different chiral ligands and substrates is a prerequisite for computational catalyst 

design.
1-3

 We have described an open-source computational toolkit (AARON) that can 1) 

automatically generate initial TS structures for new ligands and substrates based on a library of 

TS templates, 2) optimize TS structures with precise error control and geometry vetting, 3) 
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search conformers in a parallel and hierarchical way, 4) screen combinations of ligands and 

substrates from a simple input file, and 5) predict selectivities through a Boltzmann weighting of 

multiple TS structures or reaction paths. This is accomplished with the aid of a collection of 

object-oriented Perl modules (AaronTools) designed to facilitate applications of quantum 

chemistry to complex molecules.  AARON also includes a number of utilities to facilitate the 

organization, storage, and dissemination of generated data. 

We have demonstrated that AARON can be applied to both organocatalysis and transition 

metal catalysis, locating far more low-lying TS structures than can reasonably be found 

manually. The importance of considering multiple configurations and conformations across 

multiple elementary steps to reliably predict stereoselectivities was highlighted for several 

asymmetric reactions. The sheer number of TS structures that must be computed in such cases is 

best handled with automated tools such as AARON, and studies relying on the manual 

application of quantum chemical tools often neglect such subtleties.  

There is ample room for improvement of AARON, which is still in early stages of 

development. The most glaring need is an automated approach for constructing the TS template 

libraries on which AARON relies.
81

 There have been a number of heuristic-guided configuration 

searching methods developed that are applicable to catalytic reactions,
21,82-87

  and methods based 

on bond-connectivity have been used to explore multiple reaction pathways for transition metal 

catalyzed reactions.
83,65,67

 We anticipate combining AARON with such tools in order construct a 

more comprehensive package for computational catalyst design.  

Finally, we note that the large quantities of structural and energetic transition state data 

generated by AARON are ripe for the application of modern informatics tools. For instance, 

there has been success in applications of multivariate regressions to experimentally-generated 

stereoselectivity data as a means of both understanding stereoselectivity and designing better 

catalysts.
88

  AARON opens up the door to such informatics-driven catalyst design efforts based 

solely on computed data.  Such studies are currently underway.  
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